cat("Testing\n") cat("\n============================================================ fwildclusterboot ============================================================\n") library(fwildclusterboot) data(voters) lm_fit <- lm( proposition_vote ~ treatment + ideology1 + log_income + Q1_immigration , data = voters ) boot_lm <- boottest( lm_fit, clustid = "group_id1", param = "treatment", B = 999 ) boot_lmjl <- boottest( lm_fit, clustid = "group_id1", param = "treatment", B = 999#, # engine = "WildBootTests.jl" ) #setBoottest_engine("WildBootTests.jl") boot_lmjl2 <- boottest( lm_fit, clustid = "group_id1", param = "treatment", B = 999 ) summary(boot_lm) summary(boot_lmjl) summary(boot_lmjl2) cat("\n============================================================ httpgd ============================================================\n") library(httpgd) hgd() cat("\n============================================================ musicMetadata ============================================================\n") library(musicMetadata) print(classify_labels('Interscope')) cat("\n============================================================ summclust ============================================================\n") library(summclust) summclust(lm_fit, cluster = ~group_id1, params = "treatment") cat("\n============================================================ synthdid ============================================================\n") library(synthdid) data('california_prop99') setup = panel.matrices(california_prop99) tau.hat = synthdid_estimate(setup$Y, setup$N0, setup$T0) se = sqrt(vcov(tau.hat, method='placebo')) sprintf('95%% CI (%1.2f, %1.2f)', tau.hat - 1.96 * se, tau.hat + 1.96 * se) cat("\n============================================================ END ============================================================\n")